Rank equalities for idempotent and involutary matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some rank equalities for finitely many tripotent matrices

‎A rank equality is established for the sum of finitely many tripotent matrices via elementary block matrix operations‎. ‎Moreover‎, ‎by using this equality and Theorems 8 and 10 in [Chen M‎. ‎and et al‎. ‎On the open problem related to rank equalities for the sum of finitely many idempotent matrices and its applications‎, ‎The Scientific World Journal 2014 (2014)‎, ‎Article ID 702413‎, ‎7 page...

متن کامل

On the Open Problem Related to Rank Equalities for the Sum of Finitely Many Idempotent Matrices and Its Applications

Tian and Styan have shown many rank equalities for the sum of two and three idempotent matrices and pointed out that rank equalities for the sum P₁ + ⋯+P k with P₁,…, P k be idempotent (k > 3) are still open. In this paper, by using block Gaussian elimination, we obtained rank equalities for the sum of finitely many idempotent matrices and then solved the open problem mentioned above. Extension...

متن کامل

A new rank formula for idempotent matrices with applications

A complex square matrix A is said to be idempotent, or a projector, whenever A2 = A; when A is idempotent, and Hermitian (or real symmetric), it is often called an orthogonal projector, otherwise an oblique projector. Projectors are closely linked to generalized inverses of matrices. For example, for a given matrix A the product PA = AA + is well known as the orthogonal projector on the range (...

متن کامل

Rank Equalities Related to Generalized Inverses of Matrices and Their Applications

This paper is divided into two parts. In the first part, we develop a general method for expressing ranks of matrix expressions that involve Moore-Penrose inverses, group inverses, Drazin inverses, as well as weighted Moore-Penrose inverses of matrices. Through this method we establish a variety of valuable rank equalities related to generalized inverses of matrices mentioned above. Using them,...

متن کامل

On idempotent matrices over semirings

Idempotent matrices play a significant role while dealing with different questions in matrix theory and its applications. It is easy to see that over a field any idempotent matrix is similar to a diagonal matrix with 0 and 1 on the main diagonal. Over a semiring the situation is quite different. For example, the matrix J of all ones is idempotent over Boolean semiring. The first characterizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2001

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(01)00297-x